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Abstract—The mechanical response of cross-ply SiC/CAS ceramic matrix composites was inves-
tigated experimentally and analytically. The experiments consisted of recording stress—strain
behavior, counting matrix cracks and measuring the interlaminar shearing strength. The analysis
employed an extended shear-lag model which incorporated non-linear behavior of the 0° plies and
interlaminar slip between the 0 and 90° plies. The evolution of the multi-cracking process was
determined by means of fracture criterion, leading to the prediction of the overall stress-strain
response of the cross-ply laminate. () 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Ceramic materials retain their load bearing properties at temperatures that are much higher
than levels that are admissible for metals and polymers. The major limitation on the
mechanical performance of monolithic ceramics, which is their excessive brittleness resulting
in low levels of strain at failure, can be overcome by the incorporation of relatively ductile
fibers into the ceramic matrix. Since unidirectional reinforcement enhances ductility in the
fiber direction, but does little to overcome brittleness in the transverse direction it is
necessary to utilize multi-directional reinforcement for structural applications. The simplest
circumstance of such reinforcement is represented by cross-ply laminates where fibers in
distinct plies are oriented perpendicularly to each other.

The listing and summary of reference literature concerned with the very active field of
ceramic composites is beyond the scope of this work. However, a comprehensive list of
references which includes an overview of research on unidirectionally reinforced ceramics
and an evaluation of works on cross-ply composites can be found in a recent publication
(Erdman, 1995). It suffices to say that the list of references can be divided into three
groups that focus primarily on modeling, modeling supported by experimental work, and
experimental studies. In most cases the aforementioned investigations were concerned
with detailed studies of specific micro-mechanisms. In fewer circumstances (e.g. Zhu and
Weitsman, 1994) a model was developed to account for the overall stress—strain response
of the uni-directional composite, by accounting for multiple fractures.

The situation is less satisfactory in the case of ceramic matrix cross-ply laminates.
Some of these works employ shear-lag models developed for polymeric cross-ply laminates
(e.g., Nuismer and Tan, 1988, 1989; Lee and Daniel, 1990) in spite of their obvious
limitations when applied to the ceramic case, caused by the fact that the foregoing models
disregard the pronounced non-linearity of the 0° plies and the presence of slippage at the
0/90° interface. In some articles the latter effects are treated in an ad hoc manner.

As will be shown in this article, the determination of the interfacial shearing strength
between the 0 and 90° plies provides a crucial parameter for the modeling of the response
of cross-ply laminates. While measurements of the interfacial shearing strength between the
fiber and matrix in ceramic composites abound in the literature, together with accompanying
mechanics models (see Erdman, 1995 for a listing of articles concerned with fiber/matrix
interface studies) there seems to exist only a single work concerned with the interlaminar
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shearing strength (Wu et al., 1993). However, that work did not provide information for
SiC/CAS ceramic composites, which is required for the present work.

The purpose of this article is to elucidate the global stress—strain response of cross-ply
ceramic composites by accounting for, then averaging, the micro-level effects. Therefore,
only macro-level stress—strain behavior of the 07 plies is considered and interactions between
micro-level fractures in the 0 and 90" plies are ignored. Some accounting for such micro-
level interactions were attempted recently (Yu et al., 1995).

2. EXPERIMENTAL

2.1. Materials and experimental set-up

Mechanical tests were performed on two ceramic matrix composite crossply lay-ups,
[0,/90,]), and [0,/90,], consisting of SiC/CAS (Nicalon fiber/Calcium alumino silicate glass
ceramic matrix). Test coupons of 15.2 x 1.27 x 0.165and 15.2 x 1.27 x 0.24 c¢m, respectively,
were machined from laminated plates. The specimens were tabbed with tapered glass/epoxy
(G-10) to minimize stress concentrations, and the specimen edges were polished to facilitate
observation of microscopic damage progression under load. .

Testing was conducted on MTS 50 Kip servo-hydraulic test system with 442 controllers
and Microprofiler function generator. Instron “Supergrips”™ were used in conjunction with
Instron mechanical wedge action grips to minimize the effects of bending and torsion on
the specimen and provide clamping in a controlled manner. An Olympus BH2 optical
microscope mounted on a X YZ platform was used in conjunction with a digital chip camera
to record all activity on the specimen surface during load application. This video system
was connected to a VHS format video cassette recorder to save all test records in real time
as load was applied. The final magnification of this video system was approximately 750 x .
A schematic representation of the test set-up is shown in Fig. 1.
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Fig. I. Experimental set-up.
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All tests were conducted in stroke (displacement) control at a loading rates between
0.003 and 0.010 in/min. An MTS 632 extensometer with a one inch gage length was used
to monitor strain. To collect stress—strain data, the specimens were loaded continuously to
failure while load and strain signals were recorded using an HP3497 data acquisition/control
unit. To determine crack densities as a function of applied stress, it was necessary to
interrupt the loading intermittently at pre-determined stress levels. During these stages, the
surface of the specimen was scanned for evidence of damage. The stress and strain levels
were then recorded to correlate observed damage with specific points on the stress—strain
curve. It should be noted that the stress—strain curves for both the continuous and inter-
mittent tests were in close agreement.

2.2. Damage mechanisms and stress—strain response of cross-ply ceramic matrix laminates
The overall response of cross-ply laminates reflects the behavior of the 0" plies and the
additional mechanisms introduced by the presence of the 90° plies and the 0/90" interfaces.
The stress—strain behavior of the 0 plies exhibits substantial non-linearity as shown
in Fig. 2. The mechanisms that account for the above non-linearity consist of matrix
cracking bridged by intact fibers, which is accompanied by fiber/matrix interfacial debonds
and slippage. At higher load levels fiber fragmentation and pull-out occurs. However. in
this investigation a laminate-level model is constructed from ply level behavior. Therefore,
the response of the unidirectional layer is treated as a ““lumped” property to be incorporated
within the cross-ply model. Consequently, the current analysis overlooks the detailed
mechanisms within the 0" plies which were treated by Weitsman and Zhu (1993, 1994).
The additional mechanisms characteristic to cross-ply laminates are transverse cracks
in the 90° ply groups and interfacial slip at the 0/90 " interfaces. Typical micrographs of
transverse cracks are shown in Figs 3(a) and (b). Note that at lower stress levels the crack
in the 90 ply terminates at the interface, while at higher stress levels these cracks are
accompanied by a multitude of cracks in the 0 plies. In many cases, the latter cracks are
clustered in the neighborhood of a transverse crack in the 90" as shown in Fig. 4.
Typical stress—strain and crack density data arc shown in Figs 5(a) and (b). It is worth
noting that while the stress-strain curves show remarkable reproducibility, the crack density
data exhibit substantial scatter. At least in part, this scatter is due to the presence of
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Fig. 2. Stress—strain response of unidirectional caramic matrix composites.
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discontinuous, meandering and partial cracks which are difficult to positively identify,
hence the observed crack density is somewhat subjective. A listing of crack density data is
given in Table 1.

Although some evidence of inter-ply interfacial slip may be discerned from micrographs
such as in Fig. 4, such evidence does not provide the quantitative information required for
the modeling of the mechanical response. Therefore an assessment of the magnitude of the
interfacial shearing strength, 7% was obtained with the aid of a custom made “‘mini-shear”
testing fixture sketched in Fig. 6.

This fixture is designed to be installed between the actuator and the crosshead of any
standard testing machine that can accommodate flat platens. The specimen, which consist
of a [0,/90,], lay-up, is inserted in the fixture, with the outer 0° plies constrained against
motion while the inner, 90° ply group, is pushed forward by the anvil. The load and
displacement of the anvil are then monitored throughout the test. It should be noted that
a very small specimen is required to avoid buckling and reduce misalignment in order to
minimize any uneven shearing stresses at the two 0/90° interfaces. Typical specimen dimen-
sions were 6.2 x 6.2 x 1.65 mm. In some cases the length of the specimen (parallel to the
load direction) was reduced to 3.1 mm. A typical load displacement record is shown in Fig.
7.

It should be noted that the “mini-shear” test yields inaccurate results since specimen
thicknesses vary and the 0/90° interface is not clearly defined. Consequently, it was not
possible to obtain a precise match between the widths of the die and the 90° ply group,
which resulted in stress concentrations near the corners of the specimen where it was
supported by the die, as can be seen in Fig. 8. These stress concentrations undoubtedly
yielded lower than actual values for the interfacial shearing strength, % Nevertheless, an
average experimental value of approximately 35 MPa was obtained from a series of eighteen
tests, which seems to provide a reasonable order of magnitude for t*to be employed in the
predictive model. It should be noted that due to data scatter we had 27 MPa <
t¥< 54 MPa.

3. ANALYSIS

3.1. Linear elastic case

Consider a ceramic cross-ply laminate as shown in Fig. 9 with exterior layers of 0°
plies and interior 90° plies. An average axial stress, ,, is applied to the laminate resulting
in the cracking of the 90° plies. The crack spacing, 2L, is assumed to be uniform along the
length of the specimen.

In the sequel we shall employ the shear-lag method to derive approximate expressions
for the stress and displacement fields for the cracked geometry. Let i = 1, 2 refer to the 90
and 0° ply groups, respectively. Then employing standard notation, we assume

2
w (x,2,) = f(x) [a.+c1 <Z> ] 0<z <h

n
s (5, 22) = ) [a2+b2 (f})m (,7)] 0<z <h ()

In addition, the transverse displacements are taken to be

v, =10, = )E, 2

and the out-of-plane effects are discarded. Consequently, the shear stresses are given as:



The multi-fracture response of cross-plv ceramic composites 5055

& ;4

Fig. 3b. Multiple transverse cracks in the 0 and 90° ply groups prio to laminate failure.
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Employing  the boundary and continuity conditions 12 (x,z, = h,) =0,
12z =0=0, Wz =h)=t2xzn=0=1%x) and wxz=~h)=
u>(X, z, = 0) together with eqns (1) and (3) it is possible to express the shearing stresses in
terms of the average displacements as follows :
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Table 1. Cross-ply strength and damage data
Cinitiation Cinitiation Saturation Saturation
Spec. O [MPa] [MPa} density [ # /in} density [# /in]
No Lay-up [MPa] 90" plies 0" plies 90" plies 0" plies
6-1 [0,/90,], 151.0 65 65 32 180
6-2 [0,/90,], 1458 103 86 20 122
6-3 [0,/90,], 136.9 48 108 36 146
6-4 [0,/90,], 151.9 65 76 34 238
6-5 [0,/90,], 154.9 42 105 40 180
6-6* [0,/90,], 139.0 NA NA NA NA
6-7* [0,/90,], 139.3 NA NA NIA NA
6-8* [0,/90,], 149.0 NA NA NA NA
5-3 [0,/90,], 134.7 72 50 20 186
5-4 [0,/904], 136.6 51 51 24 192
* Continuous loading tests.
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Fig. 6. Mini-shear inter-ply strength fixture.
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Fig. 7. Typical load displacement response of the mini-shear specimen.
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Note that these expressions are equivalent to those adopted in earlier articles (e.g.. Nuismer
and Tan, 1988, 1989 ; Lee and Daniel, 1990).
In particular, the interfacial shearing stress becomes :

7, — 3CYCR
* = A, <“~ﬁ”l) where A4, = Cl o C“’ (5)
1] 1’)

Where the “overbar” indicates an average with respect to z, namely :

h,
Fix) _hJ Sx,z)dz; (6)

Additionally, we employ primes to denote differentiation with respect to x.
Turning to the normal (axial) stresses, from lamination theory we have:

70 = Qfim+ 0,
o0 = QWi+ Qe (7

In addition, the force balance relations read :
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()
=) _
[ hl
*
=T ®)

which, upon integration with respect to x yield the “global’ equilibrium expression :
¢Vh +6Ph, = 6.h 9

where 4, is the average applied far-field stress. Differentiation of eqns (7) with respect to x,
substitution into eqns (8) and employment of eqn (5) yield :

"% 2% N A55 1 1
TH* -t =0 whereof = — [ ——— + -—— (10)
h th(ll) th(ﬂ)

The general solution of (10), t*(x) = A, sinh(xyx) + B, cosh(zx,x) reduces to
T*(x) = A, sinh(oyx) (1)

since by symmetry we have t*(x = 0) = 0. Furthermore, the traction free crack surface at
x = L implies:

cV(x=0)=0 (12)
which in view of (9) gives
, &k
6P (x=1L)= P (13)

To determine 4, in eqn (11), we equate 7"*(L) between eqn (5) and (11) and utilize eqns
(12) and (14) to represent &) (L) and @#5(L) in the first of eqns (7) in terms of &,. We then
obtain:

__ T
® " a, cosh(ag L)

(14)

where

T*(L) = ‘A‘SSF (M +8, <Q(112)~_ 03 QW))
QN \ h, Q) '

The expression for g, is derived from the condition of transverse equilibrium. In the absence
of loading in the y-direction we have:

8 L
6,hL =h, J &}.”dx+h2f ¢Pdx =0 (15)
(

0 }

The detailed expression for g, is given in eqn (A1) of the Appendix.
In summary, the stress distributions are given by:
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T*(x) = A, sinh(o x)

A
& (x) = — (cosh(ay L) — cosh{xyx))
hyog
~(2) _ O-,\'E _ 6'(‘,”(X)h|
o) =5 i,
1 2) h, —z,
T,(x;J(-’C,Zl) =1t*(X)z/h, 2% (x.2:) = *(x) (16)

2

Since the outer, 0° plies remain intact, straightforward integration of eqn (7) yields the
average axial strain:

i, (L) 1
g =~ =

L of

<g__*f _ Q(lzz)ﬁ_y _ 4o (cosh(a(,L) _ EPM)) (17)

hz hzdo aOL

To correlate the crack spacing, 2L with the applied stress &,, we employ a fracture
criterion and assume that new cracks will form midway between existing cracks whenever
the available energy equals the energy required for new crack formation.

For that purpose, consider a steady-state transition between crack geometry states ““1”
and 27, with associated crack spacings of 2L and L, respectively, as depicted in Fig. 10(a).
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We assume that as cracks progress in the 90° ply group, they span the thickness, 24,. The
energy available for crack growth, J, is given by Anderson (1991):

I1
Jz—a withll =U—-W = —U* (18)

Ineqgn (18) ITis the total potential energy of the system, U is the elastic strain energy, Wis the
external work done on the system, and U* is the complementary energy, while d4 = 24, da
denotes the new fracture surface area. Consequently J = (1/2h,)(dU*/da) which, in view of
the assumption of steady state crack propagation, yields J = (1/2h)) [2U* (state “27) — U*
(state *‘1"")]. The foregoing result is expressed as:

2U0%,, - U,
=~ o - 19
J 2h, (19
The criterion for new crack formation is given by :
J=J 20

where J,, the critical value, is a material property that can be determined experimentally
for a given material system.

The complementary energy contains both the normal and shearing stress components.
For state ““1”°, with a crack spacing of 2L we have:

L (gl L e
Usl, = 4h, J J si”(cfi“)d&a“dx+4h:f f F(e) do? d
¢

0 J0 0 )

L (h t‘\':' 1 rh T&l:'
+4[ J J 7y dil d:dtx+4[ J J FFED) AP dzdx 21T
0 l; (

o Jo Jo Jo Ju Jo

An analogous expression for U*|,, can also be obtained by adjusting the limits of inte-
gration. However, it should be noted that the integrands in (21) will depend on the crack
spacing L. For instance, straightforward evaluation of the last two integrals in (21) yields
the closed-form expression for the complementary energy due to shearing stresses:

g 248 (s0hQuol) L\ B
3 4o 2)\cw oW

A correlation between crack spacing L and levels of applied stress &, is obtained by
incrementing &, gradually, and evaluating the available energy J at each stress level for
comparison with J.. A new crack configuration (crack spacings are halved) occurs when
J = J.. At this stage comparisons of energies levels are made between U*|, , and U*|,,, and
so on. The stress—strain relation is obtained from (17), however since the applied stress &,
is assumed to remain constant when J = J,, there is a corresponding jump in strain g,.

+Clearly, in the linear case U* = U and the integral in eqn (21) can be converted to surface integrals resulting
in obvious simplifications. However, our main purpose here is to lay the groundwork for the non-linear response
of the 0" ply groups where U* and U are not equal.
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Fig. 11. Comparison of linear model and experimental stress—strain response.

A typical comparison between data and predictions that assume linear material
behavior are shown in Fig. 11. We note an unacceptable discrepancy between the two
curves when &, exceeds 90 MPa.

3.2. Non-linear response of the 0° ply group

The stress—strain response of the 0” plies exhibits pronounced non-linearity as shown
in Fig. 2. This non-linear behavior is due to the formation of matrix cracks bridged by
intact fibers, which is accompanied by interfacial fiber/matrix slippage. At higher stress
levels, after matrix cracking has attained saturation density, additional damage is caused
by fiber fragmentation and pull-outs.

To simplify the ensuing analysis the stress-strain response of the 0° plies will be
represented by the bilinear curve depicted by the solid line in Fig. 12, with a “knee” at
&, = 6, = 200 MPa and stiffnesses Q7 and Q1% below and above g, Consequently, eqns
(7) are replaced by

=(1) _ ()= (Ux
gl = Q11”1+Q12)5y

_ i=1,2 (22)
50 = Qi+ 0%,
while
7 = oW, +0¢, (@7 < 6o)
F2 = Q~(121)17'2+Q(122)5y+6' (62 < ay) (23)

with
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Since # attains its maximal value at x = L, where ¢ = &,4/h,, it is clear that a non-
linear region will emanate from x = L towards x = 0 for &, > a,i/h,. When &, < a,h/h,
linear response will prevail within the entire region 0 < x < L, while if 2 (x = 0) = 0, the
0° plies will respond non-linearly over the entire domain.

In general, non-linear response of the 0° plies will occur for x* < x < L while linear
response is confined to 0 < x < x*, and by definition:

72 (x*) = 0, (24)

Consequently, eqns (22) hold for 0 < x < L while the first and second eqns of (23) are
valid for 0 € x < x* and x* < x < L, respectively.

The formulation of the present circumstance resembles that of the preceding subsection,
but requires several modifications. Expression (10) and its solution given in (11) remain
valid for 0 € x < x*, while over the remaining range we have:

T*—ajt* =0 o« = Ass (1 + : (*<x<L) (25)
A AV IUR 0
whose solution is:
*(x) = A, sinh(x, x) + B, cosh(a; x) (26)

The three unknowns 4,, B, and x* can be evaluated with the aid of boundary conditions
in (24) and the continuity requirements :

*Hx*+) = (et —)

F(x*+) = 6P (x*—) 27
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The expressions for 4,, B, and g, [the latter determined employing (15)] are given in the
Appendix, eqns (A2) and (A3). These expressions contain the yet undetermined value of
x*, which is obtained through numerical iteration until the condition in (24) is satisfied.
The stress field is expressed as follows:

*(x) = A, sinh(ayx)

g.h  ouhs Ao

g = + (cosh(ayx*) — cosh(ayx)) 0<x<x¥
hy hy hiog
] 0"k, 28
= T h (28)
while
T*(x) = A, sinh(x; x) + B, cosh(a; x)
s = 1 A, (co§h(a,L)—co.sh(a1x)) (< x < )
hyoy | 4+ B, (sinh(o; L) —sinh(a, x))
() _ 6."‘}—2 _ M 9
T Tk (29)

The average global strain is again determined according to the same procedure as the
previous sub-section. Upon integration of the constitutive relation for the 0° plies we get

1
oRL

1 A . 2=
& = ouL {O’OX* — i, ;O (x* cosh(oyx*) —sinh(ogx*) /oty ) — Q‘fz’s),x*}ﬁ-

EAL—x%) 1 | |
- A, ((L—x*) cosh(o, Ly —sinh(o, L)/at; +sinh(x, x*)/a;)
X hy haoy , , (30)
QW8 +6)(L—%) + By ((L— x*) sinh(a, L) —cosh(a, L)/, +cosh(a, x*)/a,)

The circumstance that 62 (x = 0) > ¢, yields the simpler results

*(x) = A4, sinh(a; x)

A, .
M (x) = ——(cosh(a; L) —cosh(x, x))
hio,
g h—af
oP(x) = T (1)
h,
with
i@, (L) 1 (g.h A sinh(a, L) i
- = _ h — Ny e
& I Q~(121] {h2 My, cosh(a; L) o, L (szg,‘ +6) (32)

Note that the expressions for the shearing stresses t%)) and {2 with z retain the forms listed
in (16).

The prediction of crack spacing and density, which follows the reasoning expressed in
eqns (18)—(20), requires the evaluation of the complementary energy U*. In the present
case, the integrations with respect to x must be split between the range 0 < x < x*, which
is governed by eqns (28) and the first of (23), and the range x* < x < L where eqns (29)
and (23) apply [eqns (22) apply to both regions]. Consequently, over the range x* < x < L
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the inner integration with respect to &' must be further divided between the ranges
0 < &? <0, and 6, < 62 < 6. The resulting complementary energy is then given by:

U, =1, +L+1;+1,

where

ah (1717 LG
n=on { f <—2*—aa.'>Q‘f;s_l. ave | (757 —evois Jar

2 2

Q4

0

2
To

L (o5 s A ! N I
+4h,(L—x*) {Q(z) <? ’U()«‘»)Qn)"” 55 (O-O(&)'QIZ +4) 5

11

_24; (sinhaox*)  x*\ [ _}_‘,,hj,,
RN 2)\ew ey

2/ h, h, (A3 +B7) . . "
=3 (C‘sls’ + C(szs)) {T [sinh(2a, L) —sinh(2z, x*)]

loa

o~

Bl — AL —x* A B
+( 1 Bl X )+ 1D
2 2w,

[cosh{(2a, L) —cosh(2x, x*)]}

(33)

S M ()2 ah, (* 522 R
L s J <(a\ ) _ﬁz,g‘_Q(lz;)dx ) J ((a_\ LRS! M)> dx
i

The integrals /, and 7, express the contributions of the normal stresses, while /; and /,
account for the contributions of the shearing stresses t') over the ranges 0 < x < x* and

x* < x < L, respectively.
For the case when 6’ (x = 0) > o, the computation of U* reduces to:

U*IL = il +fz

with

A L /(1032 dhy [T ((5D)? . )
I, = 4, J <& “5'(\1)5n~Q(112)>dx+ - J ((%'“ _5£»')(5"Q‘1_2)+6'))d»\
(
Q

oo \ 2 O o

2 Py
% +é

(34)

+ 4 L{U‘z’< ! ! >+ <6
15 Tl = Oy | ==,
2 o OV o

and, which upon evaluation of the integrations vields :

. 243 (sinh(Za,L) L)< h hy )
L="2 S

T3 4 2)\cw o

A typical prediction for the stress—strain response is shown in Fig. 13(a). Note the
significant improvement over the linear model. However, the comparison of predicted and
observed crack densities, shown in Fig. 13(b) shows that there still remains a serious
deficiency in the bilinear analysis. The discrepancy between observed and predicted crack
densities persists over a significant range of assumed J. values, as shown in Figs 14 and 15
for two cross-ply lay-ups. This divergence remains in spite of the reasonable agreement

between predicted and observed stress—strain curves.
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Fig. 13a. Comparison of bilinear and linear models with experimental stress—strain response.

w ——————-—
(b) Lay-Up : [0,/90,]
h;=h,=0.4 mm

7 | Je=15 J/m?

Data (Specimen 6-4)
Bilinear Model

Transverse Cracks Density [#/inch]

1 L
0.4 0.5 0.6

Strain[ %]

Fig. 13b. Comparison of bilinear and linear models with experimental transverse crack density.

3.3. Non-linear response of the 0° ply groups with interlaminar slip
As noted in Section 2, the 0/90° interface can support an interfacial shearing stress of
finite magnitude, % Consequently, the analysis of Section 3.2 must be delimited by the
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Fig. 14a. Effect of J, [J/m?] on the stress-strain response for a [0,/90,], lay-up.
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Fig. 14b. Effect of J, [J/m* on transverse crack density for a [0./90,), lay-up.

restriction that 1¥(x) < t This restriction implies the existence of an interfacial slip region

where 7%(x) = t*1
The results of Sub-sections 3.1 and 3.2 shows that t*(x) increases monotonically with

x. Therefore, the condition 7*(x) = t*will occur first at x = L and, upon further increase

t It should be noted that the shear-lag model cannot address coulomb friction since it incorporates the implicit
assumption ¢, ~ 0, in view of the employment of laminate relations (7). These relations are analogous to those of

classical plate theory.
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Fig. 15b. Effect of J, [J/m’] on transverse crack density for a [0,/90,], lay-up
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Fig. 16. Relative positions of the slip zone L —/, < x < L and the “knee point” x* x* < x < L.

in &, will extend towards x = 0. Since ¥ and the “knee-point stress” g, are independent
material properties, the relative ranges of the interfacial slip zone and non-linear response
of the 0° plies can vary with &, as depicted in Fig. 16. We distinguish between three cases :

“Case 1”: The slip zone encompasses the “yield” zone (L—/, < x*).

“Case II”: The “yield” zone encompasses the slip zone (L —/, > x*).

“Case III"”: “Yielding” over the entire domain, i.e. x* = 0, with slippage over the region
L—-I. <x<L.

In all the above cases we have:
T*(x) = ¥ L[ <x<L (35)
with the newly introduced unknown, /,, which is determined from the condition:
™*(x=L-1)=r1* (36)

3.3.1. Case I (x* > L—1,) In view of (8), (12), (13) and (35) we have:

™Hx) =1
() = v—“”};f Y <
50 (x) = (fh‘f - ﬁ[h—_ ) G7)
Together with eqn (24), the third of eqns (37) yields:
Xt = ”"hf;,}ﬁj' VL (38)

5

Within the adjacent slip region, eqns (8}, (9), (24) and (35) give:

*(x) = ¥

T.ﬁX* "X) + O_-\’E_U(lhl

=)
7o) h, h,

(L—1, < x < x*)
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*_
00(x) = gy — SO =) (39)
h,
Substitution of (38) into (39) gives:

H,

o= L—l) = "

> 1_ T,
FOx = L—l) ="~ (40)

Note that the latter expressions can also be obtained from (8), (12), (13) and (35). Turning
to the inner contact region, which is governed by linear response, the solution follows the
format of Section 3.1, except that the boundary conditions (12) and (13) are replaced by
those in eqns (40). We get :

T*(x) = A, sinh(2,x)

A,
A (x) ="+ {cosh (o (L—1,)) —cosh(axyx)} O<x<L-/)
h, hyog
s ho dlh
o) =5 =5 (1)

where the expression for A4, is given by eqn (A4) in the Appendix.

It should be noted that A4, depends on /, and &,. The strain &, which is again determined
through the use of (15), contains dependence on x* (and /,), since the integrations indicated
in (15) involve expressions that vary within the subregions whose extent is defined by the
location of x*. Consequently, 4, depends implicitly on x* as well.

The solution for /, can be obtained through numerical iteration as follows :

(1) Calculate x* from eqn (38).

(2) Select a trial value for the slip zone length, /,, consistent with x* > L —/_

(3) Employing eqns (37), (39), (41), (7) and (15), evaluate &,.

(4) Calculate 4, from eqn (A4).

(5) Calculate t* (x = L—/) using the first of eqns (41) and check to see if t*(x = L—/) =
7% If s0, then /, has been located. If not, it is necessary to perform another iteration by
returning to step (1).

Finally, upon employing the appropriate forms for 6> from (37), (39) and (41) the
expression for the average axial strain becomes :

1 L—1, O—.(2) (7)(0 x* 6.1\2»_ (27)[','\. L 6.(\2) 2 _ g
o d[ G [ O P 0tna ],
0 04 L-1, of a Q i

3.3.2. Case IT (L—1, > x*)
In this case linear response occurs in the inner region 0 < x < x*, where the stresses
are given in forms whose appearance is identical to eqn (28), namely :

T*(x) = A, sinh(ayx)

) d\h 00h7
&b = -+ A(cosh(xl)x*) —cosh(,x)) 0 < xv<x¥

hl h 1%
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a.h ¢k

h, hy

7 = (43)

The outer region, L—1I, < x < L is typified by the condition t*(x) = t¥which is associ-
ated with interlaminar slip (note that the non-linear stress-strain response of the 0° plies
given in (23) applies). Consequently the expressions for the stresses coincide with eqns (37),
namely :

™*(x) = ¥
50 (x) = f%i) (L—l.<x<L)
1
5.h THL—
s = 5 - =D (44)
At the edge of the slip zone eqns (45) give:
™
=(1) 7 _ o 58
6 (x=L—1) .
=(2) — _ - 6-.\'5 _ T.:kls
R (43)

The intermediate region, x* < x < L—1,, is characterized by non-linear response of the 0”
plies, as expressed in (23), with a perfect bond at the 0/90° interface. The stress field in this
region is similar to that in eqn (29), except that it must match the continuity of stresses at
x = L—1/ listed in (45). We have:

T*(x) = A, sinh(a, x) + B, cosh(a, x)

S (x) = T, N 1 (A4, [co§h(<x1(L—l;)):~co.sh(oc1x)] } (< x<L1)
hy  hoy |+ B, [sinh(a, (L —1)) —sinh(x, x)]
~(2) — &h- . hlg_.(rl)(x)
72 (x) T h (46)

As in previous circumstances, the solution depends implicitly on &, through the stress—
strain relations in (22) and (23). The transverse strain g, is again evaluated with the aid of
eqn (15). However, for the present case integration over the region 0 < x < L must be
subdivided over the intervals 0 < x < x*, x* < x < L—/,and L/, < x < L, with appro-
priate expressions for 9.

In the present case, the problem is fully coupled in x* and /, and the numerical solution
involves a simultaneous iterative scheme. Expressions (43)—(46) contain the five unknowns
Ay, Ay, By, x* and /. These unknowns are uniquely determined upon employment of the
boundary conditions in (12) and (13) as well as the continuity of t*(x) and ¢\ at x = x*
and x = L—/,. Furthermore, by hypothesis, 6 (x = x*) = 6, and t*(x = L—1) = ¥
Detailed expressions for 4y, 4,, B, and &, are given by eqns (A5)-(A7) in the Appendix.

The average axial strain g, is given by :

* 2(2) 2y~ L—1 =(2) (s _ 4z L &2 Ns oA

s 1 * O-,(\f’_Q(12)8yd s Oy _QIZB)'_—G.d O'\.)~Q(12)8y‘0'd

=71 — oo | T S
o Q1| x* QII L-l QH

(47)

333, Case I (x* =0,0 <1, <L)
In this case the stresses in the region L —/, < x < L are given by eqns (44) while within
the inner region we have:
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*(x) = A, sinh(a,; x)

N4
50 (x) = T,T + =L fcosh(uy (L 1) —cosh(xi0)} (0 < x < L—1)
1 1“1
~(2) _ O_'\,}_l _ 6(\,1)h| 8
00 =55 = 48)

The corresponding expressions for 4, and &, are given in the Appendix, eqns (A8) and
(A9). Also the expression for the average axial strain is:

1 (-4 O_'(xZ) _ (Zdlér —6 1 5(,(2) _ (2)§v — G
g\_ = — _’_—J‘:_-__ dx—l— — *_LQI.Z__ng (49)
L), o L), o

3.3.4. Complementary energies

In Case I (x* > L—/) the contributions of the normal stresses to U*|, are given by
the integrals 7, and I, in eqn (33). However, due to the disparate expressions for ¢\ and
2 in (37) and (39) it is necessary to split integrations of 7, and 1, over the region 0 < x < x*
between the two segments 0 < x < L—/, and L—/ < x < x*. On the other hand the con-
tribution of the shearing stresses to U*|, stems from the sub-regions 0 < x < L—/, and
L—1, < x < L. This contribution is given by :

2 2 Sinh(zao(L_l\)) L_[v hl h2
=) 4 _ ) 2
11 3 {AO < 410 2 +(T:‘j l.y Cgls) + ngs) (50)

In Case I (x* < L— /) similar considerations apply to the contributions of the normal
stresses, which are again given by /; and 7, in eqn (33), except that in this case integrations
over x* < x < L are divided among x* < x < L—/and L—/ < x < L.

In this case the contribution of the shearing stress to U*|, is given by:

0

A2 (S_"nh(Qoto(L—l_v)) _ r_*>+ (4i+B1) [Sinh@m(L—lx))}

0 2 4o 2 4o, —sinh(2a, x*)
T3 Y
Bi—AN(L—1, —x* A, B, [cosh(2a, (L —/,
L‘*'(] 1)( L ’C)+ 18 (2o, ( ) S (H
2 20 —cosh (20, x*)
/ h,
N S UL QY TN
cy R

Finally, for Case I1I (x* = 0}, the complementary energy calculation is similar to Case
I. However, it is necessary to replace x* with L —/, in the limit of integration, while 7, is
replaced by:

. Ay (F5(6P)? @) 2 4h, [t (6?
- < XXl R 5 2 A - ¥ _ =27 N P
8 ~(|21’ L ( 2 760 +U)>d«\+ Q~(121) JL. i < 2 OO +J)>dx

4 L{G( 1 L) o <sz%)+& fQ)} )
2 - = 0 ~ -
2 o % Q(Izl) 07

Then the contribution of the shearing stress to U*|, is given by :
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3.4. Special considerations concerning the evolution of slip zones

In some circumstances it may occur that a transition from “‘state 17 to “‘state 2", which
involves the creation of new cracks centered between existing cracks, will be associated with
new adjacent slip zones in length /; which turn out to be shorter than the length /, associated
with “state 17, Since the present analysis assumes symmetry about the mid-plane between
neighboring cracks, /, </, implies that reverse slip occurs near the “state 1" cracks in a
scenario of monotonically increasing external loads. For obvious reasons such an event
cannot occur in reality. This circumstance is depicted in Fig. 17.

Although /; < /, may indeed be feasible, it would be associated with interfacial “‘lock-
ing” over the range /; < x </, rather than with reverse slip. However, stick-slip regions
adjacent to some cracks and slip regions adjoining other cracks to not conform with the
symmetry assumptions of the present analysis. In fact, any attempt to account for the
sequential evolution of stick and slip regions near ““older” and "“‘newer” cracks will quickly
become intractable.

To overcome the foregoing difficulty, we chose to set 7, =/, whenever the analysis
yielded /, < /.. This implies that at the stress level corresponding to the transition from
“state 17" to “state 27, as well as for some stresses exceeding that level, the length of the slip
zone, /, is no longer unknown and is taken as a prescribed quantity.

The analysis, which corresponds to three foregoing cases, I, 11, III, involve simplified
versions of the results presented in eqns (35)-(53). The full details are given by Erdman
(1993).

4. PARAMETRIC STUDIES AND MODEL PREDICTIONS

Computations were performed for both [0,/90], and [0,/90,], lay-ups with J, = 12, 15,
20 and 30 J/m? and t*= 35, 45 and 55 MPa, for a total of 24 case studies. Predicted stress—
strain response and crack densities were compared with experimental data and observations.
For the sake of brevity we focus attention to /. = 12 and 15 J/m’ over the foregoing range
of ¥ Results are shown in Figs 18-21. It is apparent that the closest agreement between
model predictions and experimental data occurs for J. ~ 15 J/m® and 1%~ 50 MPa. The
predictions associated with J. = 20 and 30 J;/m’ fall above the experimental stress—strain
curve and below the observed crack density data. Complete details are given in an earlier
quoted work (Erdman, 1995).
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Fig. 18a. Stress—strain response of a [0,/90,], laminate bilinear slip analyses. J_ = 12 J;m",
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Fig. 18b. Transverse crack accumulation for a {0,/90.], laminate bilinear slip analyses, /. = 12 }/m,.

5. CONCLUDING REMARKS

The response of SiC/CAS ceramic matrix composites was analyzed by means of
an extended shear-lag model. The non-linear stress—strain behavior of the laminate was
associated with the non-linear response of the 0" plies and the evolution of transverse cracks
within the 90° plies. The formation of the foregoing cracks was predicted by a fracture-
energy criterion. To attain good agreement between model predictions and experimental



5076 D. L. Erdman and Y. Weitsman

150 A
(a) Je=15 J/m? qbq;%“bq"q&

_ 100 ——— (Specimen 6-7 [0,/90,])
]

e

E o Case 1, T=35 MPa

§ ° Case 2, T;=45 MPa

9 50

° Case 3, TS=55 MPa

1 i 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Strain[%]

Fig. 19a. Transverse crack accumulation for a [0,/90,], laminate bilinear slip analyses, /. = 15 J/m>.
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Fig. 19b. Transverse crack accumulation for a [0,/90,]; laminate, bilinear slip analyses J, = 15 J/m*.

observations it was necessary to include interfacial slip between the 0 and 90° ply groups.
For this purpose, an assessment of the interfacial shearing strength was obtained from
“push-in” data collected by means of a custom made inter-ply shear fixture.

Satisfactory correlations between model predictions and experimental data were
achieved for both the [0,/90.], and [0,/90,], cross-ply lay-ups employing reasonable values
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Fig. 20a. Stress—strain response of a [0,/90,], laminate for bilinear slip analyses. J, = 12 J/m’.
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Fig. 20b. Transverse crack accumulation for a [0,/90,], laminate bilinear slip analyses, J. = 12 J/m?

of J, ~ 15 J/m? and t*~ 50 MPa, which fall within the acceptable range of recorded data.

Note that the current model assumes that all cracks are equally spaced at an initial
distance of 2L, and upon reaching criticality (J = J,), they all split in unison resulting in a
new uniform spacing of L. This assumption is, obvicusly, an unrealistic idealization. A
reasonable improvement may be achieved by considering a non-uniform crack spacing, 4
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Fig. 21a. Stress—strain response of a [0,/90,], laminate for bilinear slip analyses, J, = 15 J/m?.
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Fig. 21b. Transverse crack accumulation for a [0,/90.], laminate bilinear slip analyses, J, = 15 J/m™.

ranging over L < 4 < 2L. Then the formation of new transverse cracks would occur only
within the largest spacings, namely at A = 2L.
This revised assumption implies that when crack spacings switch from 2L to L the
commensurate average crack spacings are i = [3(2L)/4] and 7 = [3(L)/4]. respectively,
+The selection of a lower limit of = L is motivated by the assumption of a common value of J, throughout

the laminate. For example, consider 7, = kL with k < /. then this would imply that cracks spaced at A = 2kL < 2L
will split before those spaced at A = 2L.
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when compared with the aforementioned assumption of uniform crack spacings of 2L and
L. This implies the existence of 33% more cracks when Z,,, = 2L and 33% fewer cracks
when A, = 2L subdivides into A.,, = L. Consequently, the foregoing assumption over-
estimates the stiffness at /.., and underestimates the stifiness at 4., Since new transverse
cracks are assumed to occur continuously at all load levels, the discontinuities in the
predicted curves in Figs 11, 13-15, and 18-21 would be replaced by continuous curves,
which should better approximate the experimental data.
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APPENDIX

Carrying out the integration in (15) results in the following expression for the transverse strain :

5 = =0 (CihL+B ki ks)
T Bikika+ L(Cyhy + Cohy)

(A

where

¢ = Q(llz)/Q[xllla G, = Q(z]:) _(Q(IIZ))Z//Q[Ill)s G = (12:)// [121), Gy = Q(zzz’*(Qllzz))z/Qﬁ)

and
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(C,—C3) sinh(ag L)
X Gy

B = (Lcosh(oc(,L)—

ky = Ass{(hay 047 Q) cosh(a, L))

AQ\Y

hs

= (12 2y
k4‘Q12QIl)_ 128101

3

In the case of the non-linear response of the 07 plies, the expressions for 4;, B, are obtained through use of
the boundary conditions in (12), (13) and (27):

{Al} 1 |: cosh(a,x*) —ua, sinh(a,L):l {ksﬁ‘,—i—kbri,.—-h} A2)
B, D —sinh(x,;x*) &, cosh(x, L) A,y sinh(x,x*) (
where
D = o, cosh(o, (L—x*})
Employing (15) for the bilinear case, &, s given as:
{hz CHL—x*)+1[Cy 6+ Csflo — C (s + B5)] }
.- =& C (Ba+ Br)—h, Cy g +hC x* + hC (L—x*)—h, Cs B ] (A3)

! {hl(C2L+C| (Bs+B:) — Cafs — Cs By) + i (Cox* + Co(L—x*)) }

Note that k, and C,—C, are the same as in the previous solution while the newly introduced constants in
(A3) are given by :

_ Ass k Ass
= S —
hao 047 057 cosh{agx*) oih,

h. A o )
ky =0 Q(1‘1)+—th|21) kf,:%S - ]A"&
h, h (1

k,

Co= QRIOR,  Co=QE—©@WYON. = 0ReI0W
while

B = x* cosh(ox*) — sinh(ay x*) /%,
B2 = (L—x*)cosh(x, L} —sinh{(x, L)/x; +sinh(ax, x*)/x,
B3 = (L—x*)sinh(a, L) —cosh(e, L)ja, +cosh(o, x*)/a,

:E‘kléaﬁl B :)’Iﬁz +7abs
T h % ’ hyo,
*lélkdﬁl 2Bt yshs
Bs = hyog By = hyo,
B = kiks B, _ oohyx* B, = 73B2 + 7685
¢ by hy ’ hyoy
i ks lélle.l“l
J 1 R cosh(x,.x*)
Y2 =B ke —k ko, . . }
l . sinh{a, L) sinh (o, x*)
73 —k;  —kika
74] —ks ‘léll‘:zdl .
1 . sinh(x x*)
Vs :B —kq kykaa, . }
. cosh(a, L) sinh(ayx*)
Ve ks kikoo, d
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In the circumstance that non-linear response of the 0 plies is accompanied by interfacial slippage, *Case [
(L—1{, < x*) we have:

Ay =k, (k16 +kai ) — kg (A4)
with
/;1 = Ass/(hay Q1 Q1 cosh(zg (L—1))

ke = — T2 o
$ 7 cosh(on (L —1))

For the situation where non-linear response of the 0 plies is accompanied by interfacial slippage, “"Case li™*
(L—{ > x*) we have:

-4u :/\tl(/\'z"l\jxd\ +/\'45‘) (AS)

The values of A4, and B, for this case are given by:

{A]} 1 [ cosh(x, x*) — o sinh(x, (L~ /))]{ SO+ K E, -Iéf{ (A6)
B, D —sinh(x, x¥) 2, cosh(a, (L—1)) ] Agsinh(x,x*) J
with
D =, cosh(a, (L —I,— x*))
; Ass6 N
ky = Tjo +¥x
hQ(‘ZI»
The expression for £, is then given as:
Coh(L—x%) = (C, — C)(fls +Bro) =1, Bo(C1 = C)
o — G AN B(Cr = C)+h, (€, = C) + Cyhix* + Coh(L — x¥)) A7
o= M BAC, = C)+m B(C) = C)Hhy Co LA Ry Cox* + hy Co (L= x*)} (AT)
where
B; = (L—1,—x*)ycosh(x,(L—1))—sinh(x (L—1))/x, +sinh(z, x*)/a,
/3" = (L= —x*)sinh(x, (L—1,)) —cosh(x, (L —1))/x, +cosh(zx, x*)/x,
R S N STy A
Bs o, : By = /1,9«l
R R Ol Skl 25
B = /1|3(] h, ’ Bro = 2/,
h ks /\tll\:ﬂl
1 . : cosh{o, ¥*)
a2 —=| ks —k kg { }
JA D . sinh(x, (L —1/) sinh(z,x*)
‘*71 —ks —kykox,
and
“fﬂ —ks */\:11;'111 L
I 1 - { smh(a]x*)
]M:ﬁ e R sty (L — 1) sinh(a, 1)
. cosh(x,(L—1,))sinh(o,x
1/"6" ks kykeaa ! J
For Case III of the slip analysis we have:
An:/\:1(/\'}0'_\“‘15.15—5.*/‘js)““l\:\K (AS)

with
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k’l = Ass/ U, Q(llI]Q'uzl' cosh(x; (L—1)))
k’4 _ Q(lljl 7'1'; —Q‘fw’ (]IID

ks =0le

v oo
ke = o
cosh(x,(L—1))

and the transverse strain is given as:

/13('7[4*(‘5()_‘\,/_1L+((‘5 -Cy) <I\:\k7/}\5\ _/\:\l‘j<{;1 ‘/‘:x/;l +H(L—1)+ T

£ =

| T GEY RN RaTaRtah vy T (A9

with

. 1
B = ¥ {(L—1)cosh(a (L—1)y—sinh(o, (L—1));2,}
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